A modeling assessment of the role of reversible scavenging in controlling oceanic dissolved Cu and Zn distributions

نویسندگان

  • S. H. Little
  • D. Vance
  • M. Siddall
  • E. Gasson
چکیده

[1] The balance of processes that control elemental distributions in the modern oceans is important in understanding both their internal recycling and the rate and nature of their eventual output to sediment. Here we seek to evaluate the likely controls on the vertical profiles of Cu and Zn. Though the concentrations of both Cu and Zn increase with depth, Cu increases in a more linear fashion than Zn, which exhibits a typical “nutrient-type” profile. Both elements are bioessential, and biological uptake and regeneration has often been cited as an important process in controlling their vertical distribution. In this study, we investigate the likely importance of another key vertical process, that of passive scavenging on sinking particles, via a simple one-dimensional model of reversible scavenging. We find that, despite the absence of lateral or vertical water advection, mixing, diffusion, or biological uptake, our reversible scavenging model is very successful in replicating dissolved Cu concentration profiles on a range of geographic scales. We provide preliminary constraints on the scavenging coefficients for Cu for a spectrum of particle types (calcium carbonate, opal, particulate organic carbon, and dust) while emphasizing the fit of the shape of the modeled profile to that of the tracer data. In contrast to Cu, and reaffirming the belief that Zn behaves as a true micronutrient, the scavenging model is a poor match to the shape of oceanic Zn profiles. Modeling a single vertical process simultaneously highlights the importance of lateral advection in generating high Zn concentrations in the deep Pacific.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of estuarine natural flocculation process in removal of Cu, Mn, Ni, Pb and Zn

The flocculation of dissolved heavy metals is a process which has an important effect on decreasing the concentration of the colloidal elements during estuarine mixing of river water and sea or ocean water. During this important process, a large amount of colloidal elements change into particles in the form of flock and the dissolved loads decline. This study is performed to evaluate the mechani...

متن کامل

Risk Assessment and Spatial Modeling of Heavy Metals Contamination in Topsoil around Venarj Manganese Mine by Artificial Neural Networks Method

Background and Objectives: The aim of the present study was to assess the probable heavy metals contamination in topsoil surrounding Venarj mine in Qom province using contamination indices and artificial neural networks method. Material and methods:  in order to evaluate the contamination status around Venarj mine in Qom province, 70 soil samples were collected in an area of 22 Km2, and  the to...

متن کامل

Evaluation of Discrete and Passive Sampling (Diffusive Gradients in Thin-films – DGT) Approach for the Assessment of Trace Metal Dynamics in Marine Waters – a Case Study in a Small Harbor

Two complementary approaches, based on discrete and passive samplings (diffusive gradients in thin-films DGT), supported by the speciation modeling, were evaluated for the assessment of distribution and operational speciation of trace metals (Zn, Cd, Pb, Cu, Ni and Co) within a small marine harbor (Rijeka, Croatia). Concentrations of dissolved metals were relatively low and comparable to, or sl...

متن کامل

An investigation on role of salinity, pH and DO on heavy metals elimination throughout estuarial mixture

One of the most paramount processes that play a considerable role in reducing the concentration of heavy metals during estuarine mixing is flocculation. Not only does such a process cause a huge percentage of metals to come into the particulate phase, but also it provides ample nutrients for the aquatic life. In the present study, impact of such factors as salinity, pH and DO on flocculation of...

متن کامل

Assessment of Anodonta cygnea as a Biomonitor Agent for Copper and Zinc in Anzali Wetland, Iran

Background: Anzali wetland has been subjected to high levels of pollution due to contamination from several industrial sites in addition to agricultural chemicals. Mussels have been widely used for monitoring pollution in aquatic ecosystems, because they, as filter feeders, bioaccumulate pollutants. Therefore we decided to evaluate Anodonta cygnea for its application as a bio-monitor for copp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013